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Configurational entropy and mechanical properties of cross-linked polymer chains:
Implications for protein and RNA folding

Dmitrii E. Makarov*?* and Gregory J. Rodfr
!Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712
Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, Austin, Texas 78712
(Received 6 December 2001; published 19 July 2002

We discuss the statistical mechanical properties of a single polymer chain that forms cross links among its
monomers. Models of this type have served as prototypes in theories of RNA and protein folding. The chain is
allowed to form pseudoknots and its monomers can each participate in multiple cross links. We demonstrate
that the conformational free energy of such a chain can be estimated by using an algorithm that scales as a
power of the number of cross linkgN*— N2, depending on the problenStraightforward exact evaluation of
the chain partition function via multidimensional integration scales exponentiallyNvahd often is compu-
tationally prohibitive. Our approach can also be used to compute the “entropic force” generated by a cross-
linked chain when it is stretched at its ends. Such forces can be directly measured by atomic force microscopy
or by laser optical trap experiments performed on single RNA, DNA, and protein molecules.
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I. INTRODUCTION space of the moleculeThis allowed several groups to per-
form kinetic Monte Carlo simulations of RNA3-5] and
Biopolymers such as RNA and proteins self-assemble intgrotein[1,2] folding, a task that is computationally prohibi-
unique three-dimensional structures that are necessary ftive with the current atomistic scale methods.
their function. Understanding how nature accomplishes this The most time consuming step in such simulations is
task is one of the most active topics of current biochemicafomputing the free energies of contact formation, which is
and biophysical research. In order to attain the most stabléduired in order to calculate the probabilities of contact for-
native state, the initially unfolded polymer must overcome gmation or breaking. One therefore needs an efficient algo-

free energy barrier that is associated with the loss of configudthm for computing the free energy for any given set of
rational entropy in the folding process. In order to under-contacts. A straightforward algorithm, in which one simply

stand the free energy landscape of folding, one is thus reQerforms a brute force evaluation of the partition function of

quired to compute the free energy for various conformation§he cha.ur_n,. involves\-dimensional Integration, and therefore
of the polymer. is prohibitive when the number of contacts is large. Such an

Recently, several workers have developed a picture iapproach has'been.u.sed in R for the case of an RNA
. L . . o Tmolecule that is sufficiently small. Other approaches used the
which the foldl.ng of a smgle biopolymer moleculg is viewed single loop approximatio7,8], a mean-field-type theory
as a process in which it forms the required native contactfg], or an interpolation between the ti@]. As we found in
[1-5]. To be more specific, in this picture the conformation o simulations, such approximations are often inaccurate,
of a chain is specified by a list of contadisr cross link$  gjthough they do reproduce qualitative trends in the free en-
fliajabfiz.i2b-- fin.int} formed among its monomers. ergies of proteins. Other approaches to the statistics of cross-
Here the monomers=1, 2,...,L are numbered along the |inked chains were developed in gel thedt0]. However,
chain. An example of such a conformation is shown in Fig.there cross links are considered to be random. Here we are
1. The meaning of a cross link or a contact depends on theoncerned with a single chain forming a specific set of cross
particular physical problem under consideration. In the caséinks that is dictated by its secondary/tertiary structure.
of RNA the cross links refer to base pairing between comple- Calculating free energies becomes much easier if the
mentary nucleotides. In the case of proteins, one says that
two amino acid residues form a contact if the distance be-
tween them is smaller than a prescribed distd6deForm-
ing a contact between a pair of monomers may or may not be
associated with the creation of an actual chemical bond be-
tween them. The conformational space of the polymer con-
sists of all possible sets of contacts.

The advantage of such a representation for a polymer is
that the conformational space associated with it is much
smaller than that of the original problethe full coordinate

{ia.j3}

*Email address: makarov@mail.cm.utexas.edu FIG. 1. An example of a polymer chain conformation with three
"Email address: gir@ticam.utexas.edu contacts.
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FIG. 3. A contact map of the SH3 domain protein. Amino acids
numberi andj are said to form a contatepresented as a point on
this map if the distance between their-carbon atoms is shorter
than 6 A and ifli—j|>12[1,2]

(©)

length n with no contacts. This probability can be approxi-
mated by various polymer models such as a Gaussian chain,
the Kratky-Porod model, the wormlike chain, the freely
jointed chain, et¢17]. What is the configurational entropy of
such a cross-linked chain? Makarov and Mé¢fijihave pre-
polymer does not form so called pseudoknots. Two contactgiously considered the case of Gaussian chain polymers. The
{i,j} and{k,I} do not form a pseudoknot if they are either method we propose here is applicable to a rather general
independenti(<j<k<I) or nested (<k<I<j), as shown class of polymers. The only requirement is that uncon-
in Fig. 2. In much of the work done on RNA folding, strained polymer segments bounded by the “nodes” of the
pseudoknot configurations of chains were disallow&d],  cross-linked network be statistically independent of each
leading to very efficient dynamic programing algorithms for other. We explain this requirement in detail in Sec. Il. Al-
computing the partition functionsl2—15. With the discov-  though this property may not be exactly satisfied for arbitrary
ery of pseudoknots in RNAsee, e.g., Refl16] and refer-  chains, we argue there that it is a reasonable approximation
ences thereinthe need to take into account pseudoknottedfor a broad range of polymer models including those conven-
RNA conformations has become apparg8k Pseudoknots tionally used to describe biopolymers.
complicate matters in two ways. First, the free energy of a A related issue that is considered in this paper is calculat-
cross-linked chain with pseudoknots is more difficult to cal-ing the force-extension curve of such a cross-linked polymer.
culate. Second, allowing pseudoknots leads to a dramatiThis is of great interest in connection with the single mol-
increase in the total number of possible chain conformationsecule studies of individual RNA, DNA, and protein mol-
While the approach presented here does not solve the probcules stretched by the atomic force microscopy, laser optical
lem of searching all the pseudoknotted conformations, it fatrap, or magnetic bead techniques, see, e.g., RE8s-25.
cilitates the computation of their free energies. The existing theoretical work on this problem for the case of
In proteins, pseudoknotted arrangements of polypeptid®NA assumes the absence of pseudokfaés-29. We will
chains are the rule rather than an exception. In addition, nashow how to compute the force extension curves of single
tive contacts in proteins tend to “cluster.” In other words, a polymer chains that have cross links including those that
single residué may participate in multiple contact§i,j;},  result in pseudoknots. Of course, stretching a polymer mol-
{i,j2},.... This happens because the contacts are not assogicule will result in the breaking of its cross links, which is
ated with molecular bonds but rather describe spatial proxnot considered here. Instead, here we compute the force gen-
imity of amino acid residues. Hydrophobic effect favors theerated by the molecule with its cross links intact. To simulate
chain configurations, in which the side chains of the hydrosingle polymer extension experiments, one will have to
phobic residues cluster together, thereby hiding from wategupplement this treatment with a procedure describing the
and this results in the clustering of contacts. To illustrate thiskinetics of cross-link formation and breakirtgee, e.g., Ref.
Fig. 3 shows the contact map for the native state of the SHB30]).
domain(protein databank file 1SHF.pgOne can see thata  This paper is organized as follows. Section Il explains
single residue indeed forms multiple contacts. how one can calculate the contact formation probabilities
The purpose of this paper is to demonstrate how to evaluand polymer force extension curves from the probability dis-
ate the configurational entropy of any cross-linked chain at aributions of the distances between monomers. In Sec. Il we
moderate computational expense. The specific questions thagrive Kirchhoff-type equations for calculating the probabil-
we will answer are as follows. Suppose we have a chain thaty distribution of the distance between any pair of mono-
has a given list of contacf§iy,j1}.{iz.j2},...{in,in}}, S€€  mers in a cross-linked chain. Section IV outlines a general
Fig. 1. Suppose we also know the probability distributionalgorithm for solving these equations for an arbitrary net-
pon(r) for the end-to-end distance vector of a chain of work of nonlinear chains and discusses how the computa-

FIG. 2. (a) Independent(b) nested, andc) pseudoknotted ar-
rangement of two contacts.
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a

FIG. 5. A chainab that consists of the segmerss and ch.

FIG. 4. Formation of a contagg,b} in a cross-linked chain. B. The force extension curve

) o ) The probabilityp,y(rap) is directly related to the force-
tional effort in this algorithm depends on the number of crosssytension curve of the chain when it is pulled at the points

links. In Sec. V we describe our general algorithm for calcu-5ngp The pulling forcef,, is related to the extension of the
lating conformational entropies of cross-linked chains. Inp4in by[10]

Sec. VI we deal with a technical aspect that is concerned

with the existence of redundant contacts. In Sec. VII we fao=dFap/drap, (3
present a numerical example and calculate the entropy of a

polymer that forms three cross links, two of which form awhere

pseudoknot. Section VIII concludes with closing remarks.

Fan(r)=—KkgT Inpgp(r) (4)

Il. CONTACT FORMATION PROBABILITIES is the free energy of the cross-linked chain with the con-
AND FORCE EXTENSION CURVES straintr,,=r. The sign in Eq(3) corresponds td,,, being

OF CROSS-LINKED CHAINS the forceexertedon the chain. We note that one has to be

careful applying Eq(3) to single polymer moleculeg31].
Depending on how the force extension curve is measured,
Consider the chain conformation shown in Fig. 4. What isthere may be large fluctuation in the distanigg and/or in
the entropy changa S upon bringing points andb in con-  the forcef,,. For example, if one achieves polymer stretch-
tact with one another? First, we need to specify more preing by attaching a magnetic bead to its end then the foyge
cisely what we call a contact. Here, we assume ¢handb s determined by the magnetic field while the distangg
form a contact if the distance between them is less than ghay undergo large fluctuations. Alternatively, one can force
certain lengthD, r,,<D. Let pau(rap) be the probability the polymer to have a given distancg, and then measure
distribution of the distance vectog,. Then, assuming that the resulting resistance fordg, by monitoring the displace-
D is small enough that this probability can be considerednent of the cantilever attached to the polymer’s end. In this
constant within a sphere of radils the probability of form-  case, the measured force may undergo fluctuations. If such
ing the contact is equal to fluctuations are large then the mean values of the force
and/or extension are not necessarily the same as their most
eXP(AS/kg) =voPan(0), @) probable values. In this case, as shown in R&f], the mea-
sured force extension curve may deviate significantly from
Eq. (3).

A. The entropy of contact formation

wherev,=47D33. The total free energy change upon the

formation of such a contact is S _
C. Statistical independence of subchains

We see that we generally need to be able to compute the
AF=¢,,—TAS, (2)  probability distribution of the end-to-end distance vector of a
polymer. To make the treatment of complex cross-linked
polymers feasible, we will make the assumption that sub-
wheree ,;, is the free energy of binding betwearandb. We  chains of such complex cross-linked chains are statistically
will not be concerned with this quantity here and will focus independent. To illustrate the meaning of this, consider a
solely onAS. The details of the model such as the form of chain shown in Fig. 5. We can view the chaib as a com-
the short-ranged interaction betwesandb and whether or  posite chain that consists of the subchadwsand cb. The
not a contact is associated with a molecular bond, etc., wilktatistical independence implies
affect the factow but will not change the form of Eql).
We will therefore treab, as a parameter here. _ 3
Central to the computation afS is therefore the prob- pab(rab)—f d°rePac(rc=ra)Pen(rp=re)- )
ability distribution p,(ra,) for the distance between two
monomers. In what follows we will assume that this prob-Equation is satisfied exactly for any chain that consists of
ability is known for any chain segment that does not formindependent links. For a chain of independent links that
cross links. In the following section we will show how to consists of monomeis=0,1,...,n, one can write the end-to-
calculate the probability of a cross-linked chain. end probability distribution as
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Jd3uy---dPuy exp{—[v(uy) +- - +v(uy) kg T}S(Up+up+- -+ u,— 1)

Pon(r) = [d3uy---dPu, exp{—[v(uy) +- - +v(uy) l/KsT} ’ ®
|
whereu;=r;—r;_, is the length of theth link andv (u;) its links or composite chains each having multiple cross links
energy. If we sea=0, b=n then one can easily see that the but there are no cross links betwesmnandchb. The probabil-
probability (6) satisfies Eq(5) for any choice G<c<n. ity distribution for the distance betweenandb is equal to
Two examples of independent link chains commonly used
in biopolymer modeling includél) Gaussian chains where _ [ 4 B
the potentiab is harmonicp (u;) = (1/2) yu?, and(2) freely Pab(r)= F1Pac(r1)Pen(r—r1)
jointed chains where the length of the link is fixéd;| = 1.
When the links in the chain interact with one another, Eq. Ef 3 _
(5) is generally invalid. Such interactions can be of two d°ryexd —Fac(ry)/ksT]
types: local interactions that account for stiffness of the s ex — F op(F = )/KaT]. ®)

chains and nonlocal interactions leading to excluded volume
effects[32].

If, for example, the chain is locally stiff, the direction of a \ne can evaluate the integral in E¢(8) by the method of

link is correlated with that of its several neighbors. Considelgieenest descents. The integral is dominated by the region
two adjacent chain segments; and cb. They interact with

one another via an interface whose size is of the order of thwhere the integrand achieves the maximum, which is given

polymer persistence length [32,33. If the contour length By the condition

of each chain segmernit,; andl., is much longer than the

persistence length, (l.c.lcp>1p), then the free energy of Flo(ry)—Fl(r—r)=0. 9)

the interface is much smaller than that of the segments; then

Eq. (5) is approximately valid. In practice, we found E®)

to be quite accurate even for modest values of the ratidJsing Eq.(3), we can identifyf,.(r)=F_.(r) as the “inter-

lac/l, . We have tested E@5) for the wormlike chain model nal” force acting along the chaiac. Equation(9) then sim-

that is often used to model DNA or RNA chaif$7] and ply states that this force should be the same in both chains,

found that while it is not exact it is generally quite accurate

for the purpose of calculating the contact formation prob-

abilities. fac(ra) =fen(r—ry). (10
Another reason Eq(5) may fail is excluded volume ef-

fmegtr‘;’. ﬁg@gvg’r?tdﬁgg Sgg:}og?étzggaggﬁziqﬁgg Erg?no"l'_his equation implicitly define_s the individual c_hain exten-

(5) must be valid for stretched chains whetg,, T, and sions,rq andr—r, as a function of the total .d|star!ce be-

f,. are all long enough. In this limit, the probability distri- tWeena andb. A physical way to change the distances to

butions are known to follow the asymptotic behayibd,32, ~ &PPly an external force between the poimtsand b. The
probability distribution ofr in the presence of such a force

Pan(r) ~exp( —c[1/R,p]°), (7)) will be

where R,,, is the mean distance betweanand b and the
scaling exponen® is related to the dimensionality and is p,,(r,f)=exp(f-r/kgT)pap(r)/Q(f)
equal to 5/2 in three dimensions. In fact, E§). can be used

Ec?))gerlve the relationship betweehand the dimensionality =Q(f)_1f o, expf- r/kgT)

Thus we conclude that even in the presence of excluded
volume effects the expressidB) may be a reasonable ap- X exd —Fadri)/kgT]exg —Fep(r—rq)/kgT],
proximation. As mechanical tension tends to increase the dis- (12)

tances among monomers, we expect &jto become more
accurate in the presence of large forces. The contact forma- b
tion probabilities are less accurately described by &. (@) (®)

because those are dominated by small distancasay from chain 1
the asymptotic regime.
Ill. THE KIRCHHOFF RULES FOR CROSS-LINKED a c b a b
CHAINS
A. Sequential connection of chains chain 2

Consider two chainsac and ch, connected as shown in FIG. 6. (a) sequential andb) parallel arrangements of two
Fig. 6(a). These either can be simple chains with no crosshains.
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where the factoQ(f) is required for normalization. Equation must be normalized,
(12) follows from the fact that the energy of any chain con-

formation under the forcé equals the energy of the same 3 " 2 _
conformation without the force minusr,,. The average d°rpan(r)= oA Pap(r)dr=1, 17
extension of the composite chadb in the presence of the
force is given by the integral which gives

(= f Arpay(r.f)-T. (1 &R ClkeT)

-1

Substituting Eq(11) into Eq. (12) and applying the method (18)

o0 r
f 47-rr2drexp( —f dr’fab(r’)/kBT)
0 0
of steepest descents with respect to brgtandr we find that
the average extension satisfies the equation The contact formation probability is now given by Ha).
F=fou(r) = fep((r)—11) (13 Finally, we evaluate the loop closure probabilipy,(0),
act 1/ b v by using the steepest descent approximation. The dominant
Equation(13) shows that the polymer springe andcb  contribution to the integral in E18) comes from the vicin-
under the forcé behave as mechanical springs with the forceity of the equilibrium extensiom*, such that
extension relationship,
P fan(r*)=0. (19

fac(rac) = F;c(rac) = —KgTVPac(rac)/Pac(rac), _ .
Here we need to distinguish between two cases.
fon(Fep) =F tp(Fen) = —KaTVPen(Fen)/Pep(Fen)s  (14) (1) r*=0. This is often a good approximation for long
flexible polymer chains. Furthermore, if both chaasand
wherer,. andrg, are the mean end-to-end distances forcb have this property then the composite chalralso has it.
these springs. Equatiofl3) simply states that these two  (2) r* #0. For example, a shoit helix in a protein will
springs must be in mechanical equilibrium under the fdrce resist bending and so the average distance between its ends is
We are now in a position to calculate the force-extensiorobviously nonzero.

curve of a composite chaiab and the entropyAS,,, of the In case(l) we expandF,,(r) in power series around
formation of a contact between its endsndb. The force- =0,
extension curve is simply obtained by solving, for every
value of forcef, the equations df,p )
Fan(r)=(1/2) Fe4---. (20
dr |
fac(rac) =f, r=0
_ The effective force constant of the chain is given by

fcb(rcb)_f

for r,. andr., and then adding these displacements to cal- dfap _ df

) -t~

ry= = =

culate the total extension,,=r,.+r¢,. Thus we find the Yan( dr  drg.t+drg drae drep

relationshipf="f,,- (r,c+rc, between the forcé and the . 1

extension of the composite spring. =[Uyac(r)+yep(r)] ™ (21
To calculateAS,y, we negd'the probability distribution Again Eqg.(21) is simply the rule of calculating the spring

Pab(r) for the composite chain in the absence of the force. Aconstant of two sequentially connected mechanical

convenient way to calculate this quantity is to use the force- Yab q y

. : ; ) springs with spring constantg,. and yp,.
extension curve for the composite chdjp(r) we just ob- - ¢ e 3
tained. Using the relationshi(s) we write Substituting Egs(20) and (21) into Egs.(16)—(18), one

obtains

Fap(r)=C+ f;drfab(r):CJrf(:drfab(r). (15

3/2 2
Vab(o)> eXF< _ Yan(0)r >, 22)

Pan(r) = ( 2mkgT 2kaT
Because the quantitiés,,(r) and|f,,- (r)| are only depen- o ) e
dent on the absolute value pfiassuming that the properties which is nothing but the probability distribution for the end-

of the polymer do not depend on its orientatione average (0-€nd distance of a spring with a force constagf(0).
chain extensiom is along the forcd and the integral in Eq. 1hiS is, of course, only valid for smail Thus theab contact

(15) is just a one-dimensional integral over |r|. The con- ~ formation probability is proportional to
stantC is determined from the condition that the probability

(0)= Yan(0) | ¥ 23
Pab(r) =exif — Fap(r)/kgT] Pabt™) =) kg
—exd —| C+ frdr’f W(r') | /keT (16) In case(2) we similarly find the contact formation prob-
0 é ability to be proportional to
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1 a 0) 1/2 p*
pab(o):4w(r*)2(;wbIEBT) exr{ fo drfab(r)/kBT}. ®

o [0,
In this case, bringing andb together requires overcoming a 1 2 3 4
free energy barrier equal tb?*drfab(r).

B. Parallel connection of chains @

Consider now a parallel arrangement of two chains be- FIG. 7. Representation of the network used in Sec. IV. The
tween the points andb, Fig. 6b). The probability distribu- network contains four nodes numbered from 1 to 4 and five ele-

tion for the distance between points andb is equal to ments(springg, whose numbers are encircled.
ther, we can treat,, for an elementary chain as “current.”
Pan(r)=NpL (1 pZ(r) Equations(13) and(27) then simply state that the total alge-

braic sum of currents in each node is zero. Finally, the dis-
tancer ., is analogous to the voltage between pom&ndb
in electric circuits. Stated above are the standard Kirchhoff
rules for electrical circuits. Thus computing the force exten-
sion curve for a cross-linked chain that is pulled at poants
andb is equivalent to calculating its conductance or comput-
ing the mechanical equilibrium of a network of mechanical
chains. For linear springs with distance-independent force
Pan(r,H)=N’(lexp{ —[FS (N +F@(r)—f-r]/kgT}, constantsy.{r) =y, this could be achieved by solving a
(26) system of linear equations that express the equilibrium con-
o ditions for each node. The problem is somewhat more diffi-
whereN’(f) is another force-dependent normalization factor.q it for nonlinear springs, where these equations have to be
The maximum ofpq(r.f) is achieved for the extension  solved self-consistently such that the resulting extension of
satisfying the equation each chairr ,, would be consistent with its spring constant
vab- We deal with this problem in the following section.

=Nexp{—[FH(N+FZ (ke T}, (29

where the superscript4) and(2) indicate the two chains and
N is a normalization factor. If one pulls on such a polymer at
pointsa andb with a forcef then the probability distribution
becomes

f=dF(r)/dr+dFE)(r)/dr=f) (n) +£2(r). (27)

IV. NUMERICAL APPROACHES TO THE COMPUTATION
This is nothing but mechanical equilibrium condition for two OF EFFECTIVE FORCE CONSTANTS
parallel mechanical springs stating that the sum of forces at OF CROSS-LINKED NETWORKS

eithera or b is zero. The arguments that led us to E4®H)— ) )
(24) remain unchanged with the only exception that the total e have found from the preceding section that, for the
effective spring constant between the poiatandb is now  PUrPOses of calculating the effective spring constant and the

given by the sum of the individual spring constants, as id0rce-elongation curve of a system efitropic springs, one
immediately seen from Eq27), can pretend that it is a system ofechanicalsprings. The

energy of the equivalent mechanical spring connecting
" monomersi and j is given by F;;(|r;-r;|)|. The physical
df@ g, . . h .
_ (D @)y o1ab  Ylab 28) origin of Fj; is entropic; however, this quantity can be
Yab(1) = Yap (N vap (1) drp | drap’ ( treated as energy of an equivalent mechanical spring. If a
force is applied to a pair of nodes of this network, all nodes
will be displaced along the direction of the force. Thus our
equivalent mechanical problem is one dimensional. The
One can break up a complex network that consists obriginal problem of the cross-linked polymer is of course
elementary chaingeach having no contagtsnto multiple  three-dimensional. However, as shown in Sec. lll, dver-
parallel or sequential connections. That is, one can build thage displacement of each network node is equal to the dis-
network recursively by making sequential and parallel conplacement of the same node in the equivalent mechanical
nections among various subchains. The rules for the compogietwork. This displacement is along the applied force.
ite chains are the same as those for the mechanical equilib- Outlined below is a general algorithm for computing the
rium of a system of mechanical springs. They are also thenechanical properties of a network of nonlinear mechanical
same as those for the conductance of a network of condugprings. The representation of the network usind in this sec-
tors. In fact, if we cally,,conductance between poirdgsand  tion is illustrated in Fig. 7. Notice that, as a practical trick, it
b and 1k, the resistance between these points thenEL. is often convenient to represent cross links between pairs of
would state that the resistance of two sequentially connectechonomers in the polymer chain as springs of infirfidg in
conductors is the sum of their resistances and(E8).would  practice, very largestiffness that can be incorporated into
mean that the conductance of two parallel conductors is théhe network.
sum of their conductances. To pursue this analogy even fur- We view the network as a one-dimensional chain that is

C. The general case
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fixed at one end and loaded by an axial fofcat another second partial derivatives &f with respect to the nodal dis-
end. This chain is a collection of one-dimensional elementplacements;, andr is the reaction force associated with the
(or springs; each element connects two nodes of the netconstraintu;=0.

work. We denote the nodal positions before application of In the finite element metho[B4], the stiffness matrix is

the force byx;, and after application of the force by assembled from the elemental stiffness matrices. In our case,
+u;. The subscripi here enumerates all the chain nodesthe stiffness matrix of th¢th element, using the local nota-
from left to right (so thati=1,2,3,4 in Fig. 7. We suppose tion, has the form

that the total number of nodes I¢ the first node is fixed

(u;=0) and theNth node is loaded by the force. We use Y
superscriptdo enumerate thelementof the network. There I LY
are five elements in the network shown in Fig. 7, their num-

bers are encircled in the drawing. The energy ofjtieele- ~ where!)) is the ordinary spring constant of the element. The
ment is given b)F(i)(u(J)—u(_”) and depends on its elonga- assembly involves “stretching” of each elemental stiffness
tion u’—u | whereu”) andu’’ are the displacements of matrix, so that its entries are placed in the locations of the
the nodes that are connected by this element. We thus ag#obal stiffness matrix corresponding to the global numbers
using two different notations for the displacements of theof the nodes adjacent to the element. Then the global stiff-
same nodes; In thiocal notation,u’”) andu' are used to ness matrix is obtained by summation of the stretched el-
denote the displacement of the two nodes that are adjacent ggnental stiffness matrices. . o ,
the element numbgr The same nodes are assigned a global AS an example, consider the chain shown in Fig. 7. It is
index enumerating them along the chain. For example, conmade of four nod_es and five elements. The elements_ 4 and 5
sider element number 5 in Fig. 7. It connects nodes numbeg'® actually straight, and shown as curved for clarity. The
2 and 4. We can write the displacements of the node 2 in tw§tretched elemental matrices are

() ,y(J')

L (31

different ways, asl, (using the global notationor asu®® ) )

. o112 y —y1 0 0 0 o0 0 O
(using the local notation with respect to element number 5 L L 5 5
Similarly, we write the displacement of node 4 ag —yP Yy 0 0 0 2 —»? 0
=u®®. o 0 0 00" [0 =2 42 o]

The total energy of the network is given by 0 0 0 0 0 0 0 0

F=; FOWP—uly—fuy=E—fuy. (29 00 0 0 Y 0 —4® 0
00 0 0 0 0 0 0
The second term in this expression is the energy associate 00 49 —,@] NI
with the force. MinimizingF under the constraint;=0, one
obtains a system of equations for computing the displace- |0 0 —y® & 6 0 0 O
mentsu; . If F were a quadratic functional, these equations
would be linear and have the form and
Ki Kp oo Ky 0 r 0 0 0 0
Kar Kz o Koy u| |0 30 0 ¥ 0 —y¥
o/ (30 0 0 0 0 '
Kn: Kne 0 Kaw Uy f 0 —y® 0 H®
where the entries of the stiffness matrix are computed as thgo that the global stiffness matrix is
|
YD 4 @ — D — Y4 0
— 4 YD 4 24 (5 — 52 —y® -
e e N RN NIV C R €
0 e — 43 Y3+ 4(5)

To calculate the displacement of each node we insert this int¢3gand solve the resulting linear system of equations. For
example, if we takey =y =13 =* =15 =y then we find
r=—1f, u,=f/2y, us=fl2y, u,=fly, F=-—122y.
(33
If we pull this network at nodes 1 and 4, it behaves as a single spring with a stiffness equal to
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For nonlinear problems, which are of primary interest to thisBy applying Newton’s iterative method to this system, one
work, the formulation of the governing equations is not thatobtains a system of equations whose stiffness matrix is com-
much different. Upon variation of thenconstrainedree en-  puted according to the same rules as that of the linear sys-
ergy, we obtain the system of nonlinear equations, tem. The key difference between the two matrices is that the
stiffness matrix associated with the linear problem is inde-
pendent of the loading and displacements, whereas the stiff-

9/ duy r 91 r 0 ness matrix associated with the nonlinear problem depends
dElgu | [ O | _[ 92| [ O} _ (O on the displacements and reaction at the beginning of the

SRR I R XN B B iteration. Imposing the constraint; =0, we obtain the fol-
JE/duy f IN f 0 lowing system of equations for the corrections to the dis-

(39 placementsiu; and reactionsr:

Kua(ui,r) o Kyup,r) o Kyn(u,r) 0 Sr r
Koi(ui,r)  Ko(uj,r) -+ Kon(ui,r) su | [ O g,(u;,r) @5
Kna(Uir)  Ka(Ui,r) o Kyy(u,r)| O f On(ui1)
|
Newton’s method exhibits a quadratic rate of convergence, o 5
provided the initial guess is reasonably close to the solution. ~ Pi,j,(0)= fo Aaredr
Replacing all elements by linear springs may, for instance,
provide a reasonable initial guess. If a close initial guess is r -1
not available, one may resort to iterative methods that are ><exp( - fodf'filjl(r') keT|| . (37

less sensitive to the quality of the initial gudSs].

In general, it would be difficult to estimate the cost of this ] o
approach in terms of the number of arithmetic operationsThe force extension curvé, ; (r) of the chain is known.
Optimal estimates ar®(N) and pessimistic estimates are Depending on the model, it may be computed with molecular
O(N®). The former estimate corresponds to chains whoselynamics or by a Monte Carlo method from an atomistic
stiffness matrix is sparsesmall number of cross linksand  model or approximated by one of the many available models
the latter estimate corresponds to dense stiffness matriced biopolymers(wormlike chain, freely jointed chain, ejc.
(large number of cross links The minimization problem Next we compute the change of entrogy§ {{i;,j1}}
considered here can be treated by a variety of methods of:{{i;,j1}.{i».j»}}] upon the addition of a second contact,
nonlinear programming36], and their relative advantages {i,,j,}. This is given by Eq(36) and(37) except the force
and disadvantages are significantly problem dependent. Ne\f,—ljl(r) is now replaced byfizjz(r), the force-extension

ertheless, it is safe to claim that the approach proposed heggrve of the chain between poiritsandj, in the presence of

is capable of handling problems with hundreds of thousandge cross link{iy,j,}. The latter is computed as the force in
of unknowns, which is far more than is required in any prac-y composite chain using Kirchhoff's rules as described
tical problem involving an RNA or a protein molecule. above.

We next add the third cross linKis,js}, recompute the
forces and calculate the entropy change. This procedure is
repeated until all the required contacts are created and the
A. The procedure total configurational entropy is the sum of the entropy
0change in each step,

V. COMPUTING THE CONFIGURATIONAL ENTROPY

We are now ready to formulate our general recipe how t
compute the total configurational entropy of an arbitrary o o
polymer chain with the contacts{{i1,ji},{i2.js}, S=AS{} i1 i+ A i ia}}
ANy Nt We start with a chain conformation that has no T
cor;{tgctjs’\.l}We denote this conformatifin Then we compute —Hinddhdiz ol 38)
the entropy changa S {}—{{i1,j1}}] of forming the first
contact. This is given by Ed1), B. The Gaussian chain approximation

expAS[{}—{{i1.j1}}1/ks)=vopi, j,(0). (36) The procedure is simplified greatly if all the elementary
v chains satisfy the conditiofi,,(0)=0. This condition en-

sures that the probability distributigm,,(r) has a maximum
Using Eqgs.(16) and (18), at r=0. Such a condition is satisfied by many models of
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random coilg(including, for example, the common wormlike (@

chain model. Then using the arguments that lead to &8§), 10%
we find that the entropy S of forming a new contadfi,j} is

given by p(r)

7i;(0) | ¥
2’7TkBT

(39

EXF(AS/kB)ZUOpij(O):UO(

I {nm
The advantage of using E39) instead of Eq(37) or Eq. o
(24) is obvious: there is no need to calculate the distance
betweeni andj for different forces in order to compute the
integrals in Eq(37). There is no need to solve the nonlinear
system of Kirchhoff’s equations to compute the extensions of 40
nonlinear springs. Instead, one replaces all the chains with

linear springs whose effective force constants are those com- 20
puted for zero extensions. The problem is thus reduced to the

computation of the configurational entropy of a system of 10 20
Gaussian chains with the force constantg;;(0) r (nm)

=d?F; /dr?|,_,. Such a problem has already been solved in
Ref [i’] Ir=o0 P y FIG. 8. (a) The probability distribution of the distance between

rﬁhe ends of a freely jointed cha{see text for the parameterdt is

. . . . indistinguishable from the same distribution calculated in the
to be a rather drastic approximation. It is well known thatG . imationb). The f ) £ th
tropic forces measured, e.g., in single DNA, RNA, or pro- aussian approx_lmatlor( ) The force extension curve of the
er} P . ! ’ freely jointed chain. The straight line is the result obtained in the
tein molecules are strongly nonline§1,22,25,3]1. We Gaussian approximation.
stress that this replacement is accurfmiethe purposes of
calculating the chain entropyin the absence of a forte

while it would be totally inadequate for the calculation of ¢ 5ns. We identify the position of a monomex(y; ,z)
. 1 [

force extension curves of such a chain. If the conditionwith that of its  carbon. For every pair of monomers: |
fan(0)=0 is satisfied for each elementary chain, then cons '

. : . we say they form a contact if
formations where any one of them is strongly extended will
nqt be likely to be sampled py.the entire cross—l_lnked chal_n \/(Xi_Xj)2+(yi_yj)2+(Zi_zj)2<Dr (40)
without an external force. This is why the Gaussian approxi-

mation is appropriate if one needs to calculate the entropy qfhere the contact radius was taken tolbe 6 A, and if the
this chain. When a force is applied, extended conformation§istance between them along the chiiir j| satisfies the
of the chain will be sampled where deviations from theinequality|i—j|>C (whereC=12 for Fig. 3. The second

Gausgian distribgtion_beqomg significant. condition was needed in Rd®2] to exclude short-range con-
To illustrate this point, in Fig. @ we plot the exact prob- ;s

ability distributionp(r) for the distance between the ends of A |ist of contacts generated in this way, however, will

a freely jointed chain. The chain contains 100 links and th&qntain redundant contacts. To explain what we mean by this
length of each link is 0.3 nm. This probability is indistin- -onsider the contact list (see also Fig. 0

guishable from the Gaussian distribution for an equivalenq{a b},{b,c},{a,cl}. An attempt to compute the conforma-
Gaussian spring. The probability distribution eventually be-jona entropy of such a chain configuration using the algo-

comes non-Gaussian wheis large; however, for such large jihm described in the preceding section will cause trouble.
distancesp(r) is essentially zero. Since in calculating the |ngeed, in this algorithm we would first close the loop be-
loop closure probability onlyp(0) is needed, this probabil- +\eena and b, then form the contadi,c. Then we would

ity, for all practical purposes, is exactly the same as that of aRe sypposed to compute the entropy change for the formation
equivalent Gaussian chain. However, if one wants to use Eq.

(3) to calculate the forcé(r) for large extensions, then the
non-Gaussian tail ofp(r) is essential regardless of how
smallp(r) is. Thus one sees strong nonlinearity in the force
extension curve for the freely jointed model, plotted in Fig.

(b)

force (pN) 60

Replacing all nonlinear chains by linear springs may see

containing the coordinates of each atom in the protein as

8(b). Comparing Figs. & and 8b), we find that nonlinear a
behavior off(r) sets in for the extensions so large tipét) b
is essentially zero. C

VI. REDUNDANT CONTACTS

The contact map for the SH3 domain protein shown in
Fig. 3 has been computed from the protein databank file FIG. 9. A chain that forms contacts,b} and{b,c}.
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of the contac{a,c}, for which we would need the probabil-
ity pac(r). But the pointsa andc are already in contacif a - ’
is in contact withb andb is in contact withc thena is in R N
contact withc) and so this quantity is meaningless. The cal- S
culation will go awry when trying to form such a contact that (a)
already exists.

To avoid this difficulty, in our algorithm we eliminate the
redundant contact by the following procedure. We first com- -
bine all contacts intelusters For example, the list of con- S8
tacts{{a,b},{b,c},{a,c},{d,e}} will be equivalent to the fol-
lowing list of clusters{{a,b,c},{d,e}}, where the contacts
{a,b}, {b,d, and{a,c} have been combined to a single cluster
{a,b,q, where each monomer appears only once. We now
break up each cluster back into contacts. For a cluster of the
form {a;,a,,...,an} the resulting contacts will be (b)
{ai,a5},....{am_1,am}. Thus a cluster consisting of ele-

ments will be broken up inton—1 contacts. Thus the origi- IH ) $ .
nal list {{a,b},{b,c},{a,c},{d,e}} undergoes the following <— y
two transformations 1
{{a,b},{b,C},{a,C},{d,E}} {{4’12}’{8’16}’{0’20” \\~-"/,
_}{{a b C} {d e}} {44, 12}, {8, 16}}

FIG. 10. (a) A chain forming contact${0, 2@, {4, 12, {8, 16}.
The contacts to be formed are shown as dashed libgfossible

. . steps that result in the formation of this chain configuration. The
as a result of which one redundant contact has been el'ml:'ontacts to be formed at each step are shown by dashed lines.

nated. The list of contacts that results from this procedure
has the same entropy as the original one but it has no redugpain with any number of contacts, this particular problem is

—{{a,b}.{b,c}.{d,e}},

dant contacts. simple enough that the result can be obtained from a back-
of-an-envelope calculation.
VII. ANUMERICAL EXAMPLE: A FOLDING CHAIN To see this, consider a specific folding path of the chain
WITH A PSEUDOKNOT that results in the desired set of contacts, see Fi¢h)1t

. . _ . _ . consists of three steps.

To illustrate the ideas described in the previous sections, Step | Form the contacf4, 12. To find the entropy
we consider here a simple example, calculating the entropyyange, we need the probability distribution for the distance
cost of forming a cycllc' polymer that con'talns a single patween monomers number 4 and 12. This is given by a
pseudoknot, as shown Fig. () Our model is a polymer  Gayssian distribution of a spring whose lengtimis8 links

that consists ol —1=20 links. We will assume that each g therefore the spring constantyig/8. The resulting en-
segment of this polymer is a Gaussian chain. More speuflfropy change is found from

cally, we model each link as a spring with a force constant
v, . The probability distribution for the end-to-end distance exp(AS,/kg) =voPon(0)
of a free chain oh links is then given by

32
_ 3 ’}/1/8

N 32 12 " (47D /3)(27rkBT
Pon(r) = TrkgT ex T 2keT)! (41 3

3/2
= (477D3/3)< 167732) . (43

where y,=vy,/n. The mean square distance between the

ends of am-link chain is then Step Il Form the contac{8, 16. By examining Fig. )

) B ) we find that the effective spring between monomer 8 and
(r?)=3kgT/y,=ns’, $°=3kgT/7;. (42 monomer 16(in the presence of the contal, 12) consists
of two parallel chains four links each that are connected se-
The list of contacts in the folded chain configuration whosequentially with another chain of length 4. Using the rules
entropy we would like to calculate {0, 2@, {4, 12, {8,  formulated in Sec. lll we find that the effective spring con-
16}}. We will assume that a contact is formed when twostant for the equivalent chain would be given by
monomers are within a distan&@ and the resulting entropy
loss is given by Eq(1) with vo=47D33. Yo = (y1/4) T+ [2(y1 /4]t
Although in the previous sections we have described a

brute force algorithm for calculating the entropy of such aor y.z= /6. The resulting entropy change is
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’)/1/6 {{0,20}, {4, 12}, {8, 16}}

27TkBT

exp(AS, /kg) = (477D3/3)(

140,20, 14,123}
140, 2048, 163}
(44)

1
- 3

Step IIL We now see from Fig. 10) that the pseudoknot 10,201

formed by the pair of contactg, 12 and{8, 16 appears as
three chains each of length 4 connected in parallel. The re-
sulting pseudoknot spring constant ig,34. We finally com-
plete folding by closing the loop between monomers 0 and
20. The effective spring between these monomers consists of
the above pseudoknot spring connected, in sequence, with

-AS/kg 4 {14,124, {8, 16}}

{4,123}
{{8,16}}

two chains each including four links. The resulting spring
constant satisfies the relation

Yo = (v2l4) "1+ (y1/4) "+ [3(y/H] 7Y,

which givesy.=3y4/28, and, for the entropy change

371/28> 312

eXF(ASm /kB) = (4WD3/3)( 27T|(BT

9 3/2
= (4WD3/3)(W) . (45)

The resulting entropy change is

expAS/kg) =exp(AS,/kg)exp(AS, /kg)exp(ASy, /kg)

3v3/14

~ 8967372

D 3
E) ~0.00027836D/s)3. (46)

1 2

number of contacts

FIG. 11. Possible pathways resulting in the formation of the
chain configuration with the three contac{$), 2@, {4, 12, {8,
16}}. The chain entropy is plotted as a function of the number of
contacts for each path.

1/2 3
eXF(ASij/kB):Uopij(O):(;) (g) |i_j|_3/2-
(48)
Applying Eq. (47) to the present problem gives
exp(AS/kg)~0.000 057 638D/s)>. (49

Comparing this with Eq(46), the independent loop approxi-

mation underestimates the probability of forming our con-
figuration by about a factor of five. This is not surprising as
this approximation ignores the fact that forming one contact

One can check that by taking a different folding path, i.e., bymakes the chain more compact and thus facilitates the for-
adding the contacts in a different order, one obtains differenthation of others.
entropy changes in each individual steps but identically the \we next analyze the mean-field approximatidh9]. In

same final entropy46). Of course, one does nhot have t0 this approximation one uses E@7) with AS; set to be a
perform these steps manually. Our algorithm does them auygnstant,

tomatically.
In Fig. 11, we have summarized the different folding

paths and plotted the entropy of each intermediate state. For

definiteness, we assum&s=1. The entropy of the initial
state without contacts is set to be the orighs 0. All paths

lead to the same final state with all the contacts formed.

Because of the symmetry, the contalgts12 and{8, 16 are
equivalent. This results in only four distinct intermediate

states shown in Fig. 11. The lines between the states indica

the possible folding paths.
It is instructive to compare the exact result, E4f), with

the existing approximations. In the independent loop ap

proximation[7] one writes the total entropy as

AS~ D) AS,j,. (47)

1.k

—3/2
eff

6 1/2 D 3
exp(ASﬁj/kB)z(;) (g)l (50

where

lo=L/N. (51)
Iﬁ’]is approximation is expected to work well in the limit of a
large number of contactd, while in our caseN=3. Using
Eqgs.(47), (50, and(51), we find
exp(AS/kg)~0.000 415 40D/s)3, (52)

which overestimates the probability of forming this configu-
ration by a factor of~1.5.

Finally, Shoemaker and Wolyn¢g] used an interpolation

where the entropy of the formation of a single contact isformula between the single-loop limit and the mean-field for-

given by the single-loop expression

mula, Eqs.(48) and(50),
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12 3 e e that contact formation rate constants have been measured
eXP(ASij/kB):(;> (g) (e +i—=j17*) (63  experimentally in the case of simple loops in some polypep-

tides[39-41].
Substituting this into Eq(47), we find The use of our approach by itself does not solve the RNA
or protein “folding problem.” The total size of the confor-
exp(AS/kg)~0.001659D/s)3, (54) mational space and therefore the number of possible folding
o pathways is still exponentially large. Thus an exhaustive
which is larger than the exact value. search for the minimum free energy state is still a prohibitive
problem. However, use of our algorithm will greatly enhance
VIIl. CONCLUDING REMARKS kinetic Monte Carlo simulation§1-3,5,30,42 that sample

the kinetically probable pathways rather than all possible

specified by a set of contacts it forms, provides a convenie ajchways. A kinetic Monte Carlo algor_|thm mimics the evo-
ution of a single molecule en route to its native state and can

way fo discretize the conformational space of an RNA or abe directly related to the single molecule observations of
protein molecule thereby reducing its size and making it trac- otein or RNA kineticq43].

?g?' Sﬁg%’ Z[: ttehgf 522 E)nolylé?;er;s (;?r? é?sdeirs]::ergt: smaogglr;tag?[r We finally note that our results concerning the mechanical
biopolymers were proposed, lattice models being most nopropertles of cross-linked chains imply that the mechanical

table among theni37,38. We note that lattice proteins are response of individual protein and RNA molecules is con-

“models” while contact maps are coarse grained representé[-m”ed by their native topology. Klimov and Thirumalai4]

tions of “true” proteins or RNA molecules. a'rrived'at the same con.clusion on the 'basis of an off-lattice
The folding pathways, for a contact representation of sw_nulatlon of_ the _force mduc_ed unfoldlng of globular pro-

protein or an RNA molecule can be plotted as diagrams i eins. The dlver_sny .Of protein tertiary structures thus ac-
Fig. 11. Some of the pathways may be blocked because &ounts . thg d[ver_s!ty of the _mechamcal properties exhib-
high free energy barriers along them. One can further stud{}ed by proteins in living organisms.

the dynamics of such models by assuming that the transition
between any two adjacent points of a diagram is a first order
kinetic process, with forward and backward rate constants This work was supported by the Army Research Office
satisfying the principle of detailed balangg. We also note (G.J.R) and the Robert A. Welch Foundati¢gD.E.M.).

The representation, in which a polymer conformation is
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