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Configurational entropy and mechanical properties of cross-linked polymer chains:
Implications for protein and RNA folding
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We discuss the statistical mechanical properties of a single polymer chain that forms cross links among its
monomers. Models of this type have served as prototypes in theories of RNA and protein folding. The chain is
allowed to form pseudoknots and its monomers can each participate in multiple cross links. We demonstrate
that the conformational free energy of such a chain can be estimated by using an algorithm that scales as a
power of the number of cross linksN~N12N3, depending on the problem!. Straightforward exact evaluation of
the chain partition function via multidimensional integration scales exponentially withN and often is compu-
tationally prohibitive. Our approach can also be used to compute the ‘‘entropic force’’ generated by a cross-
linked chain when it is stretched at its ends. Such forces can be directly measured by atomic force microscopy
or by laser optical trap experiments performed on single RNA, DNA, and protein molecules.
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I. INTRODUCTION

Biopolymers such as RNA and proteins self-assemble
unique three-dimensional structures that are necessary
their function. Understanding how nature accomplishes
task is one of the most active topics of current biochem
and biophysical research. In order to attain the most sta
native state, the initially unfolded polymer must overcom
free energy barrier that is associated with the loss of confi
rational entropy in the folding process. In order to und
stand the free energy landscape of folding, one is thus
quired to compute the free energy for various conformati
of the polymer.

Recently, several workers have developed a picture
which the folding of a single biopolymer molecule is viewe
as a process in which it forms the required native conta
@1–5#. To be more specific, in this picture the conformati
of a chain is specified by a list of contacts~or cross links!
ˆ$ i 1 , j 1%,$ i 2 , j 2%,...,$ i N , j N%‰ formed among its monomers
Here the monomersi 51, 2,..., L are numbered along th
chain. An example of such a conformation is shown in F
1. The meaning of a cross link or a contact depends on
particular physical problem under consideration. In the c
of RNA the cross links refer to base pairing between comp
mentary nucleotides. In the case of proteins, one says
two amino acid residues form a contact if the distance
tween them is smaller than a prescribed distance@6#. Form-
ing a contact between a pair of monomers may or may no
associated with the creation of an actual chemical bond
tween them. The conformational space of the polymer c
sists of all possible sets of contacts.

The advantage of such a representation for a polyme
that the conformational space associated with it is m
smaller than that of the original problem~the full coordinate
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space of the molecule!. This allowed several groups to pe
form kinetic Monte Carlo simulations of RNA@3–5# and
protein @1,2# folding, a task that is computationally prohib
tive with the current atomistic scale methods.

The most time consuming step in such simulations
computing the free energies of contact formation, which
required in order to calculate the probabilities of contact f
mation or breaking. One therefore needs an efficient al
rithm for computing the free energy for any given set
contacts. A straightforward algorithm, in which one simp
performs a brute force evaluation of the partition function
the chain, involvesN-dimensional integration, and therefor
is prohibitive when the number of contacts is large. Such
approach has been used in Ref.@3# for the case of an RNA
molecule that is sufficiently small. Other approaches used
single loop approximation@7,8#, a mean-field-type theory
@9#, or an interpolation between the two@7#. As we found in
our simulations, such approximations are often inaccur
although they do reproduce qualitative trends in the free
ergies of proteins. Other approaches to the statistics of cr
linked chains were developed in gel theory@10#. However,
there cross links are considered to be random. Here we
concerned with a single chain forming a specific set of cr
links that is dictated by its secondary/tertiary structure.

Calculating free energies becomes much easier if

FIG. 1. An example of a polymer chain conformation with thr
contacts.
©2002 The American Physical Society08-1
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DMITRII E. MAKAROV AND GREGORY J. RODIN PHYSICAL REVIEW E66, 011908 ~2002!
polymer does not form so called pseudoknots. Two conta
$ i , j % and $k,l % do not form a pseudoknot if they are eith
independent (i , j ,k, l ) or nested (i ,k, l , j ), as shown
in Fig. 2. In much of the work done on RNA folding
pseudoknot configurations of chains were disallowed@11#,
leading to very efficient dynamic programing algorithms f
computing the partition functions@12–15#. With the discov-
ery of pseudoknots in RNA~see, e.g., Ref.@16# and refer-
ences therein! the need to take into account pseudoknot
RNA conformations has become apparent@3#. Pseudoknots
complicate matters in two ways. First, the free energy o
cross-linked chain with pseudoknots is more difficult to c
culate. Second, allowing pseudoknots leads to a dram
increase in the total number of possible chain conformatio
While the approach presented here does not solve the p
lem of searching all the pseudoknotted conformations, it
cilitates the computation of their free energies.

In proteins, pseudoknotted arrangements of polypep
chains are the rule rather than an exception. In addition,
tive contacts in proteins tend to ‘‘cluster.’’ In other words,
single residuei may participate in multiple contacts,$ i , j 1%,
$ i , j 2%,... . This happens because the contacts are not as
ated with molecular bonds but rather describe spatial pr
imity of amino acid residues. Hydrophobic effect favors t
chain configurations, in which the side chains of the hyd
phobic residues cluster together, thereby hiding from wa
and this results in the clustering of contacts. To illustrate t
Fig. 3 shows the contact map for the native state of the S
domain~protein databank file 1SHF.pdb!. One can see that
single residue indeed forms multiple contacts.

The purpose of this paper is to demonstrate how to ev
ate the configurational entropy of any cross-linked chain
moderate computational expense. The specific questions
we will answer are as follows. Suppose we have a chain
has a given list of contactŝ$ i 1 , j 1%,$ i 2 , j 2%,...,$ i N , j N%‰, see
Fig. 1. Suppose we also know the probability distributi
p0n(r ) for the end-to-end distancer vector of a chain of

FIG. 2. ~a! Independent,~b! nested, and~c! pseudoknotted ar-
rangement of two contacts.
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length n with no contacts. This probability can be approx
mated by various polymer models such as a Gaussian ch
the Kratky-Porod model, the wormlike chain, the free
jointed chain, etc@17#. What is the configurational entropy o
such a cross-linked chain? Makarov and Metiu@1# have pre-
viously considered the case of Gaussian chain polymers.
method we propose here is applicable to a rather gen
class of polymers. The only requirement is that unco
strained polymer segments bounded by the ‘‘nodes’’ of
cross-linked network be statistically independent of ea
other. We explain this requirement in detail in Sec. II. A
though this property may not be exactly satisfied for arbitr
chains, we argue there that it is a reasonable approxima
for a broad range of polymer models including those conv
tionally used to describe biopolymers.

A related issue that is considered in this paper is calcu
ing the force-extension curve of such a cross-linked polym
This is of great interest in connection with the single m
ecule studies of individual RNA, DNA, and protein mo
ecules stretched by the atomic force microscopy, laser op
trap, or magnetic bead techniques, see, e.g., Refs.@18–25#.
The existing theoretical work on this problem for the case
RNA assumes the absence of pseudoknots@26–29#. We will
show how to compute the force extension curves of sin
polymer chains that have cross links including those t
result in pseudoknots. Of course, stretching a polymer m
ecule will result in the breaking of its cross links, which
not considered here. Instead, here we compute the force
erated by the molecule with its cross links intact. To simul
single polymer extension experiments, one will have
supplement this treatment with a procedure describing
kinetics of cross-link formation and breaking~see, e.g., Ref.
@30#!.

This paper is organized as follows. Section II explai
how one can calculate the contact formation probabilit
and polymer force extension curves from the probability d
tributions of the distances between monomers. In Sec. III
derive Kirchhoff-type equations for calculating the probab
ity distribution of the distance between any pair of mon
mers in a cross-linked chain. Section IV outlines a gene
algorithm for solving these equations for an arbitrary n
work of nonlinear chains and discusses how the comp

FIG. 3. A contact map of the SH3 domain protein. Amino aci
numberi and j are said to form a contact~represented as a point o
this map! if the distance between theira-carbon atoms is shorte
than 6 Å and ifu i 2 j u.12 @1,2#
8-2
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tional effort in this algorithm depends on the number of cro
links. In Sec. V we describe our general algorithm for calc
lating conformational entropies of cross-linked chains.
Sec. VI we deal with a technical aspect that is concer
with the existence of redundant contacts. In Sec. VII
present a numerical example and calculate the entropy
polymer that forms three cross links, two of which form
pseudoknot. Section VIII concludes with closing remarks

II. CONTACT FORMATION PROBABILITIES
AND FORCE EXTENSION CURVES

OF CROSS-LINKED CHAINS

A. The entropy of contact formation

Consider the chain conformation shown in Fig. 4. Wha
the entropy changeDS upon bringing pointsa andb in con-
tact with one another? First, we need to specify more p
cisely what we call a contact. Here, we assume thata andb
form a contact if the distance between them is less tha
certain lengthD, r ab,D. Let pab(rab) be the probability
distribution of the distance vectorrab . Then, assuming tha
D is small enough that this probability can be conside
constant within a sphere of radiusD, the probability of form-
ing the contact is equal to

exp~DS/kB!5v0pab~0!, ~1!

wherev054pD3/3. The total free energy change upon t
formation of such a contact is

DF5«ab2TDS, ~2!

where«ab is the free energy of binding betweena andb. We
will not be concerned with this quantity here and will foc
solely onDS. The details of the model such as the form
the short-ranged interaction betweena andb and whether or
not a contact is associated with a molecular bond, etc.,
affect the factorv0 but will not change the form of Eq.~1!.
We will therefore treatv0 as a parameter here.

Central to the computation ofDS is therefore the prob-
ability distribution pab(rab) for the distance between tw
monomers. In what follows we will assume that this pro
ability is known for any chain segment that does not fo
cross links. In the following section we will show how t
calculate the probability of a cross-linked chain.

FIG. 4. Formation of a contact$a,b% in a cross-linked chain.
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B. The force extension curve

The probabilitypab(rab) is directly related to the force
extension curve of the chain when it is pulled at the pointa
andb. The pulling forcefab is related to the extension of th
chain by@10#

fab5dFab /drab , ~3!

where

Fab~r !52kBT ln pab~r ! ~4!

is the free energy of the cross-linked chain with the co
straint rab5r . The sign in Eq.~3! corresponds tof ab being
the forceexertedon the chain. We note that one has to
careful applying Eq.~3! to single polymer molecules@31#.
Depending on how the force extension curve is measu
there may be large fluctuation in the distancer ab and/or in
the forcef ab . For example, if one achieves polymer stretc
ing by attaching a magnetic bead to its end then the forcef ab
is determined by the magnetic field while the distancer ab
may undergo large fluctuations. Alternatively, one can fo
the polymer to have a given distancer ab and then measure
the resulting resistance forcef ab by monitoring the displace-
ment of the cantilever attached to the polymer’s end. In t
case, the measured force may undergo fluctuations. If s
fluctuations are large then the mean values of the fo
and/or extension are not necessarily the same as their
probable values. In this case, as shown in Ref.@31#, the mea-
sured force extension curve may deviate significantly fr
Eq. ~3!.

C. Statistical independence of subchains

We see that we generally need to be able to compute
probability distribution of the end-to-end distance vector o
polymer. To make the treatment of complex cross-link
polymers feasible, we will make the assumption that s
chains of such complex cross-linked chains are statistic
independent. To illustrate the meaning of this, conside
chain shown in Fig. 5. We can view the chainab as a com-
posite chain that consists of the subchainsac and cb. The
statistical independence implies

pab~rab!5E d3r cpac~r c2ra!pcb~rb2r c!. ~5!

Equation is satisfied exactly for any chain that consists
independent links. For a chain ofn independent links tha
consists of monomersk50,1,...,n, one can write the end-to
end probability distribution as

FIG. 5. A chainab that consists of the segmentsac andcb.
8-3
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p0n~r !5
*d3u1¯d3un exp$2@v~u1!1¯1v~un!#/kBT%d~u11u21¯1un2r !

*d3u1¯d3un exp$2@v~u1!1¯1v~un!#/kBT%
, ~6!
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whereui5r i2r i 21 is the length of thei th link andv(ui) its
energy. If we seta50, b5n then one can easily see that th
probability ~6! satisfies Eq.~5! for any choice 0,c,n.

Two examples of independent link chains commonly us
in biopolymer modeling include~1! Gaussian chains wher
the potentialv is harmonic,v(ui)5(1/2) gui

2, and~2! freely
jointed chains where the length of the link is fixed,uui u51.

When the links in the chain interact with one another, E
~5! is generally invalid. Such interactions can be of tw
types: local interactions that account for stiffness of
chains and nonlocal interactions leading to excluded volu
effects@32#.

If, for example, the chain is locally stiff, the direction of
link is correlated with that of its several neighbors. Consid
two adjacent chain segments,ac andcb. They interact with
one another via an interface whose size is of the order of
polymer persistence lengthl p @32,33#. If the contour length
of each chain segment,l ac and l cb is much longer than the
persistence lengthl p ( l ac ,l cb@ l p), then the free energy o
the interface is much smaller than that of the segments;
Eq. ~5! is approximately valid. In practice, we found Eq.~5!
to be quite accurate even for modest values of the r
l ac / l p . We have tested Eq.~5! for the wormlike chain mode
that is often used to model DNA or RNA chains@17# and
found that while it is not exact it is generally quite accura
for the purpose of calculating the contact formation pro
abilities.

Another reason Eq.~5! may fail is excluded volume ef
fects, which introduce nonlocal interactions among mo
mers. However, it has been argued~see Ref.@32#! that Eq.
~5! must be valid for stretched chains whererab , rac , and
rbc are all long enough. In this limit, the probability distr
butions are known to follow the asymptotic behavior@10,32#,

pab~r !;exp~2c@r /Rab#
d!, ~7!

where Rab is the mean distance betweena and b and the
scaling exponentd is related to the dimensionality and
equal to 5/2 in three dimensions. In fact, Eq.~5! can be used
to derive the relationship betweend and the dimensionality
@32#.

Thus we conclude that even in the presence of exclu
volume effects the expression~5! may be a reasonable ap
proximation. As mechanical tension tends to increase the
tances among monomers, we expect Eq.~5! to become more
accurate in the presence of large forces. The contact for
tion probabilities are less accurately described by Eq.~7!
because those are dominated by small distancesr, away from
the asymptotic regime.

III. THE KIRCHHOFF RULES FOR CROSS-LINKED
CHAINS

A. Sequential connection of chains

Consider two chains,ac and cb, connected as shown i
Fig. 6~a!. These either can be simple chains with no cro
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links or composite chains each having multiple cross lin
but there are no cross links betweenac andcb. The probabil-
ity distribution for the distance betweena andb is equal to

pab~r !5E d3r1pac~r1!pcb~r2r1!

[E d3r1 exp@2Fac~r1!/kBT#

3exp@2Fcb~r2r1!/kBT#. ~8!

We can evaluate the integral in Eq.~8! by the method of
steepest descents. The integral is dominated by the re
where the integrand achieves the maximum, which is giv
by the condition

Fac8 ~r1!2Fcb8 ~r2r1!50. ~9!

Using Eq.~3!, we can identifyfac(r )[Fac8 (r ) as the ‘‘inter-
nal’’ force acting along the chainac. Equation~9! then sim-
ply states that this force should be the same in both cha

fac~r1!5fcb~r2r1!. ~10!

This equation implicitly defines the individual chain exte
sions, r 1 and r 2r 1 as a function of the total distance be
tweena andb. A physical way to change the distancer is to
apply an external force between the pointsa and b. The
probability distribution ofr in the presence of such a forc
will be

pab~r ,f!5exp~ f•r /kBT!pab~r !/Q~ f!

5Q~ f!21E d3r1 exp~ f•r /kBT!

3exp@2Fac~r1!/kBT#exp@2Fcb~r2r1!/kBT#,

~11!

FIG. 6. ~a! sequential and~b! parallel arrangements of two
chains.
8-4
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where the factorQ(f) is required for normalization. Equatio
~11! follows from the fact that the energy of any chain co
formation under the forcef equals the energy of the sam
conformation without the force minusf•rab . The average
extension of the composite chainab in the presence of the
force is given by the integral

^r &5E d3rpab~r ,f!•r . ~12!

Substituting Eq.~11! into Eq. ~12! and applying the method
of steepest descents with respect to bothr1 andr we find that
the average extension satisfies the equation

f5fac~r1!5fcb~^r &2r1!. ~13!

Equation~13! shows that the polymer springsac and cb
under the forcef behave as mechanical springs with the for
extension relationship,

fac~rac!5Fac8 ~rac!52kBT¹pac~rac!/pac~rac!,

fcb~r cb!5Fcb8 ~r cb!52kBT¹pcb~r cb!/pcb~r cb!, ~14!

where r ac and r cb are the mean end-to-end distances
these springs. Equation~13! simply states that these tw
springs must be in mechanical equilibrium under the forcf.

We are now in a position to calculate the force-extens
curve of a composite chainab and the entropyDSab of the
formation of a contact between its endsa andb. The force-
extension curve is simply obtained by solving, for eve
value of forcef, the equations

fac~rac!5f,

fcb~r cb!5f

for rac and r cb and then adding these displacements to c
culate the total extensionrab5rac1r cb . Thus we find the
relationshipf5fab•(rac1r cb) between the forcef and the
extension of the composite spring.

To calculateDSab , we need the probability distribution
pab(r ) for the composite chain in the absence of the force
convenient way to calculate this quantity is to use the for
extension curve for the composite chainfab(r ) we just ob-
tained. Using the relationship~3! we write

Fab~r !5C1E
0

r
drf ab~r !5C1E

0

r

dr f ab~r !. ~15!

Because the quantitiesFab(r ) and ufab•(r )u are only depen-
dent on the absolute value ofr ~assuming that the propertie
of the polymer do not depend on its orientation! the average
chain extensionr is along the forcef and the integral in Eq.
~15! is just a one-dimensional integral overr 5ur u. The con-
stantC is determined from the condition that the probabil

pab~r !5exp@2Fab~r !/kBT#

5expF2S C1E
0

r

dr8 f ab~r 8! D /kBTG ~16!
01190
r
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must be normalized,

E d3rpab~r !5E
0

`

4pr 2pab~r !dr51, ~17!

which gives

exp~2C/kBT!

5F E
0

`

4pr 2dr expS 2E
0

r

dr8 f ab~r 8!/kBTD G21

. ~18!

The contact formation probability is now given by Eq.~1!.
Finally, we evaluate the loop closure probability,pab(0),

by using the steepest descent approximation. The domi
contribution to the integral in Eq.~18! comes from the vicin-
ity of the equilibrium extensionr * , such that

f ab~r* !50. ~19!

Here we need to distinguish between two cases.
~1! r * 50. This is often a good approximation for lon

flexible polymer chains. Furthermore, if both chainsac and
cb have this property then the composite chainab also has it.

~2! r * Þ0. For example, a shorta helix in a protein will
resist bending and so the average distance between its en
obviously nonzero.

In case~1! we expandFab(r ) in power series aroundr
50,

Fab~r !5~1/2!
d fab

dr U
r 50

r 21¯ . ~20!

The effective force constant of the chain is given by

gab~r ![
d fab

dr
5

d f

drac1drcb
5F S d fac

drac
D 21

1S d fcb

drcb
D 21G21

[@1/gac~r !11/gcb~r !#21. ~21!

Again Eq. ~21! is simply the rule of calculating the sprin
constant gab of two sequentially connected mechanic
springs with spring constantsgac andgcb .

Substituting Eqs.~20! and ~21! into Eqs.~16!–~18!, one
obtains

pab~r !5S gab~0!

2pkBTD 3/2

expS 2
gab~0!r 2

2kBT D , ~22!

which is nothing but the probability distribution for the en
to-end distance of a spring with a force constantgab(0).
This is, of course, only valid for smallr. Thus theab contact
formation probability is proportional to

pab~0!5S gab~0!

2pkBTD 3/2

. ~23!

In case~2! we similarly find the contact formation prob
ability to be proportional to
8-5
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pab~0!5
1

4p~r * !2 S gab~0!

2pkBTD 1/2

expF E
0

r*
dr f ab~r !/kBTG .

~24!

In this case, bringinga andb together requires overcoming
free energy barrier equal to* r*

0 dr f ab(r ).

B. Parallel connection of chains

Consider now a parallel arrangement of two chains
tween the pointsa andb, Fig. 6~b!. The probability distribu-
tion for the distancer between pointsa andb is equal to

pab~r !5Npab
~1!~r !pab

~2!~r !

5N exp$2@Fab
~1!~r !1Fab

~2!~r !#/kBT%, ~25!

where the superscripts~1! and~2! indicate the two chains an
N is a normalization factor. If one pulls on such a polymer
pointsa andb with a forcef then the probability distribution
becomes

pab~r ,f!5N8~ f!exp$2@Fab
~1!~r !1Fab

~2!~r !2f•r #/kBT%,
~26!

whereN8(f) is another force-dependent normalization fact
The maximum ofpab(r ,f) is achieved for the extensionr
satisfying the equation

f5dFab
~1!~r !/dr1dFab

~2!~r !/dr[fab
~1!~r !1fab

~2!~r !. ~27!

This is nothing but mechanical equilibrium condition for tw
parallel mechanical springs stating that the sum of force
eithera or b is zero. The arguments that led us to Eqs.~15!–
~24! remain unchanged with the only exception that the to
effective spring constant between the pointsa andb is now
given by the sum of the individual spring constants, as
immediately seen from Eq.~27!,

gab~r !5gab
~1!~r !1gab

~2!~r ![
d fab

~1!

drab
1

d fab
~2!

drab
. ~28!

C. The general case

One can break up a complex network that consists
elementary chains~each having no contacts! into multiple
parallel or sequential connections. That is, one can build
network recursively by making sequential and parallel c
nections among various subchains. The rules for the com
ite chains are the same as those for the mechanical equ
rium of a system of mechanical springs. They are also
same as those for the conductance of a network of con
tors. In fact, if we callgabconductance between pointsa and
b and 1/gab the resistance between these points then Eq.~21!
would state that the resistance of two sequentially conne
conductors is the sum of their resistances and Eq.~28! would
mean that the conductance of two parallel conductors is
sum of their conductances. To pursue this analogy even
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ther, we can treatf ab for an elementary chain as ‘‘current.
Equations~13! and~27! then simply state that the total alge
braic sum of currents in each node is zero. Finally, the d
tancer ab is analogous to the voltage between pointsa andb
in electric circuits. Stated above are the standard Kirchh
rules for electrical circuits. Thus computing the force exte
sion curve for a cross-linked chain that is pulled at pointa
andb is equivalent to calculating its conductance or comp
ing the mechanical equilibrium of a network of mechanic
chains. For linear springs with distance-independent fo
constantsgab(r )5gab this could be achieved by solving
system of linear equations that express the equilibrium c
ditions for each node. The problem is somewhat more d
cult for nonlinear springs, where these equations have to
solved self-consistently such that the resulting extension
each chainr ab would be consistent with its spring consta
gab . We deal with this problem in the following section.

IV. NUMERICAL APPROACHES TO THE COMPUTATION
OF EFFECTIVE FORCE CONSTANTS

OF CROSS-LINKED NETWORKS

We have found from the preceding section that, for t
purposes of calculating the effective spring constant and
force-elongation curve of a system ofentropic springs, one
can pretend that it is a system ofmechanicalsprings. The
energy of the equivalent mechanical spring connect
monomersi and j is given by Fi j (ur i-r j u)u. The physical
origin of Fi j is entropic; however, this quantity can b
treated as energy of an equivalent mechanical spring.
force is applied to a pair of nodes of this network, all nod
will be displaced along the direction of the force. Thus o
equivalent mechanical problem is one dimensional. T
original problem of the cross-linked polymer is of cour
three-dimensional. However, as shown in Sec. III, theaver-
age displacement of each network node is equal to the d
placement of the same node in the equivalent mechan
network. This displacement is along the applied force.

Outlined below is a general algorithm for computing t
mechanical properties of a network of nonlinear mechan
springs. The representation of the network usind in this s
tion is illustrated in Fig. 7. Notice that, as a practical trick,
is often convenient to represent cross links between pair
monomers in the polymer chain as springs of infinite~or, in
practice, very large! stiffness that can be incorporated in
the network.

We view the network as a one-dimensional chain tha

FIG. 7. Representation of the network used in Sec. IV. T
network contains four nodes numbered from 1 to 4 and five e
ments~springs!, whose numbers are encircled.
8-6



n
e
o

es

e

m

-
f
a

th

n
ba
o
b
tw

5

iat

c
n

t

-
e

ase,
-

he
ss
the
ers
tiff-
el-

is
nd 5
he

CONFIGURATIONAL ENTROPY AND MECHANICAL . . . PHYSICAL REVIEW E 66, 011908 ~2002!
fixed at one end and loaded by an axial forcef at another
end. This chain is a collection of one-dimensional eleme
~or springs!; each element connects two nodes of the n
work. We denote the nodal positions before application
the force byxi , and after application of the force byxi
1ui . The subscripti here enumerates all the chain nod
from left to right ~so thati 51,2,3,4 in Fig. 7!. We suppose
that the total number of nodes isN, the first node is fixed
(ui50) and theNth node is loaded by the force. We us
superscriptsto enumerate theelementsof the network. There
are five elements in the network shown in Fig. 7, their nu
bers are encircled in the drawing. The energy of thej th ele-
ment is given byF ( j )(u1

( j )2u2
( j )) and depends on its elonga

tion u1
( j )2u2

( j ) , whereu1
( j ) andu2

( j ) are the displacements o
the nodes that are connected by this element. We thus
using two different notations for the displacements of
same nodes; In thelocal notation,u1

( j ) and u2
( j ) are used to

denote the displacement of the two nodes that are adjace
the element numberj. The same nodes are assigned a glo
index enumerating them along the chain. For example, c
sider element number 5 in Fig. 7. It connects nodes num
2 and 4. We can write the displacements of the node 2 in
different ways, asu2 ~using the global notation! or asu2

(5)

~using the local notation with respect to element number!.
Similarly, we write the displacement of node 4 asu4

[u1
(5) .

The total energy of the network is given by

F5(
j

F ~ j !~u1
~ j !2u2

~ j !!2 f uN5E2 f uN . ~29!

The second term in this expression is the energy assoc
with the force. MinimizingF under the constraintui50, one
obtains a system of equations for computing the displa
mentsui . If F were a quadratic functional, these equatio
would be linear and have the form

S K11 K12 ¯ K1N

K21 K22 ¯ K2N

¯ ¯ ¯ ¯

KN1 KN2 ¯ KNN

D S 0
u2

¯

uN

D 5S r
0
0
f
D , ~30!

where the entries of the stiffness matrix are computed as
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second partial derivatives ofF with respect to the nodal dis
placementsui , andr is the reaction force associated with th
constraintui50.

In the finite element method@34#, the stiffness matrix is
assembled from the elemental stiffness matrices. In our c
the stiffness matrix of thej th element, using the local nota
tion, has the form

S g~ j ! 2g~ j !

2g~ j ! g~ j ! D , ~31!

whereg ( j ) is the ordinary spring constant of the element. T
assembly involves ‘‘stretching’’ of each elemental stiffne
matrix, so that its entries are placed in the locations of
global stiffness matrix corresponding to the global numb
of the nodes adjacent to the element. Then the global s
ness matrix is obtained by summation of the stretched
emental stiffness matrices.

As an example, consider the chain shown in Fig. 7. It
made of four nodes and five elements. The elements 4 a
are actually straight, and shown as curved for clarity. T
stretched elemental matrices are

S g~1! 2g~1! 0 0

2g~1! g~1! 0 0

0 0 0 0

0 0 0 0

D , S 0 0 0 0

0 g~2! 2g~2! 0

0 2g~2! g~2! 0

0 0 0 0

D ,

S 0 0 0 0

0 0 0 0

0 0 g~3! 2g~3!

0 0 2g~3! g~3!

D , S g~4! 0 2g~4! 0

0 0 0 0

2g~4! 0 g~4! 0

0 0 0 0

D ,

and

S 0 0 0 0

0 g~5! 0 2g~5!

0 0 0 0

0 2g~5! 0 g~5!

D ,

so that the global stiffness matrix is
For
S g~1!1g~4! 2g~1! 2g~4! 0

2g~1! g~1!1g~2!1g~5! 2g~2! 2g~5!

2g~4! 2g~2! g~2!1g~3!1g~4! 2g~3!

0 2g~5! 2g~3! g~3!1g~5!

D . ~32!

To calculate the displacement of each node we insert this into Eq.~30! and solve the resulting linear system of equations.
example, if we takeg (1)5g (2)5g (3)5g (4)5g (5)5g then we find

r 52 f , u25 f /2g, u35 f /2g, u45 f /g, F52 f 2/2g.

~33!
If we pull this network at nodes 1 and 4, it behaves as a single spring with a stiffness equal tog.
8-7
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For nonlinear problems, which are of primary interest to t
work, the formulation of the governing equations is not th
much different. Upon variation of theunconstrainedfree en-
ergy, we obtain the system of nonlinear equations,

S ]E/]u1

]E/]u2

¯

]E/]uN

D 2S r
0
¯

f
D [S g1

g2

¯

gN

D 2S r
0
¯

f
D 5S 0

0
¯

0
D .

~34!
c
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By applying Newton’s iterative method to this system, o
obtains a system of equations whose stiffness matrix is c
puted according to the same rules as that of the linear
tem. The key difference between the two matrices is that
stiffness matrix associated with the linear problem is ind
pendent of the loading and displacements, whereas the
ness matrix associated with the nonlinear problem depe
on the displacementsui and reactionr at the beginning of the
iteration. Imposing the constraintu150, we obtain the fol-
lowing system of equations for the corrections to the d
placementsdui and reactiondr :
S K11~ui ,r ! K12~ui ,r ! ¯ K1N~ui ,r !

K21~ui ,r ! K22~ui ,r ! ¯ K2N~ui ,r !

¯ ¯ ¯ ¯

KN1~ui ,r ! KN2~ui ,r ! ¯ KNN~ui ,r !

D S 0
du2

¯

duN

D 5S dr
0
0
f
D 2S r

g2~ui ,r !

¯

gN~ui ,r !

D . ~35!
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Newton’s method exhibits a quadratic rate of convergen
provided the initial guess is reasonably close to the solut
Replacing all elements by linear springs may, for instan
provide a reasonable initial guess. If a close initial gues
not available, one may resort to iterative methods that
less sensitive to the quality of the initial guess@35#.

In general, it would be difficult to estimate the cost of th
approach in terms of the number of arithmetic operatio
Optimal estimates areO(N) and pessimistic estimates a
O(N3). The former estimate corresponds to chains wh
stiffness matrix is sparse~small number of cross links! and
the latter estimate corresponds to dense stiffness mat
~large number of cross links!. The minimization problem
considered here can be treated by a variety of method
nonlinear programming@36#, and their relative advantage
and disadvantages are significantly problem dependent. N
ertheless, it is safe to claim that the approach proposed
is capable of handling problems with hundreds of thousa
of unknowns, which is far more than is required in any pra
tical problem involving an RNA or a protein molecule.

V. COMPUTING THE CONFIGURATIONAL ENTROPY

A. The procedure

We are now ready to formulate our general recipe how
compute the total configurational entropy of an arbitra
polymer chain with the contacts ˆ$ i 1 , j 1%,$ i 2 , j 2%,
...,$ i N , j N%‰. We start with a chain conformation that has
contacts. We denote this conformation$%. Then we compute
the entropy changeDS@$%→ˆ$ i 1 , j 1%‰# of forming the first
contact. This is given by Eq.~1!,

exp~DS@$%→ˆ$ i 1 , j 1%‰#/kB!5v0pi 1, j 1
~0!. ~36!

Using Eqs.~16! and ~18!,
e,
n.
,

is
re

s.

e

es
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v-
re
s
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o

pi 1 j 1
~0!5F E

0

`

4pr 2dr

3expS 2E
0

r

dr8 f i 1 j 1
~r 8!Y kBTD G21

. ~37!

The force extension curvef i 1 j 1
(r ) of the chain is known.

Depending on the model, it may be computed with molecu
dynamics or by a Monte Carlo method from an atomis
model or approximated by one of the many available mod
of biopolymers~wormlike chain, freely jointed chain, etc.!.

Next we compute the change of entropyDS@ˆ$ i 1 , j 1%‰
→ˆ$ i 1 , j 1%,$ i 2 , j 2%‰# upon the addition of a second contac
$ i 2 , j 2%. This is given by Eq.~36! and ~37! except the force
f i 1 j 1

(r ) is now replaced byf i 2 j 2
(r ), the force-extension

curve of the chain between pointsi 2 and j 2 in the presence of
the cross link$ i 1 , j 1%. The latter is computed as the force
a composite chain using Kirchhoff’s rules as describ
above.

We next add the third cross link,$ i 3 , j 3%, recompute the
forces and calculate the entropy change. This procedur
repeated until all the required contacts are created and
total configurational entropy is the sum of the entro
change in each step,

S5DS@$%→ˆ$ i 1 , j 1%‰#1DS@ˆ$ i 1 , j 1%‰

→ˆ$ i 1 , j 1%,$ i 2 , j 2%‰#1¯ . ~38!

B. The Gaussian chain approximation

The procedure is simplified greatly if all the elementa
chains satisfy the conditionf ab(0)50. This condition en-
sures that the probability distributionpab(r ) has a maximum
at r 50. Such a condition is satisfied by many models
8-8
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random coils~including, for example, the common wormlik
chain model!. Then using the arguments that lead to Eq.~23!,
we find that the entropyDS of forming a new contact$i,j% is
given by

exp~DS/kB!5v0pi j ~0!5v0S g i j ~0!

2pkBTD 3/2

. ~39!

The advantage of using Eq.~39! instead of Eq.~37! or Eq.
~24! is obvious: there is no need to calculate the dista
betweeni and j for different forces in order to compute th
integrals in Eq.~37!. There is no need to solve the nonline
system of Kirchhoff’s equations to compute the extensions
nonlinear springs. Instead, one replaces all the chains
linear springs whose effective force constants are those c
puted for zero extensions. The problem is thus reduced to
computation of the configurational entropy of a system
Gaussian chains with the force constantsg i j (0)
5d2Fi j /dr2ur 50 . Such a problem has already been solved
Ref. @1#.

Replacing all nonlinear chains by linear springs may se
to be a rather drastic approximation. It is well known th
entropic forces measured, e.g., in single DNA, RNA, or p
tein molecules are strongly nonlinear@21,22,25,31#. We
stress that this replacement is accuratefor the purposes of
calculating the chain entropy~in the absence of a force!
while it would be totally inadequate for the calculation
force extension curves of such a chain. If the condit
f ab(0)50 is satisfied for each elementary chain, then c
formations where any one of them is strongly extended w
not be likely to be sampled by the entire cross-linked ch
without an external force. This is why the Gaussian appro
mation is appropriate if one needs to calculate the entrop
this chain. When a force is applied, extended conformati
of the chain will be sampled where deviations from t
Gaussian distribution become significant.

To illustrate this point, in Fig. 8~a! we plot the exact prob-
ability distributionp(r ) for the distance between the ends
a freely jointed chain. The chain contains 100 links and
length of each link is 0.3 nm. This probability is indistin
guishable from the Gaussian distribution for an equival
Gaussian spring. The probability distribution eventually b
comes non-Gaussian whenr is large; however, for such larg
distancesp(r ) is essentially zero. Since in calculating th
loop closure probability onlyp(0) is needed, this probabil
ity, for all practical purposes, is exactly the same as that o
equivalent Gaussian chain. However, if one wants to use
~3! to calculate the forcef (r ) for large extensionsr, then the
non-Gaussian tail ofp(r ) is essential regardless of ho
small p(r ) is. Thus one sees strong nonlinearity in the for
extension curve for the freely jointed model, plotted in F
8~b!. Comparing Figs. 8~a! and 8~b!, we find that nonlinear
behavior off (r ) sets in for the extensions so large thatp(r )
is essentially zero.

VI. REDUNDANT CONTACTS

The contact map for the SH3 domain protein shown
Fig. 3 has been computed from the protein databank
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containing the coordinates of each atom in the protein
follows. We identify the position of a monomer (xi ,yi ,zi)
with that of its a carbon. For every pair of monomersi , j
we say they form a contact if

A~xi2xj !
21~yi2yj !

21~zi2zj !
2,D, ~40!

where the contact radius was taken to beD56 Å, and if the
distance between them along the chainu i 2 j u satisfies the
inequality u i 2 j u.C ~whereC512 for Fig. 3!. The second
condition was needed in Ref.@2# to exclude short-range con
tacts.

A list of contacts generated in this way, however, w
contain redundant contacts. To explain what we mean by
consider the contact list ~see also Fig. 9!
ˆ$a,b%,$b,c%,$a,c%‰. An attempt to compute the conforma
tional entropy of such a chain configuration using the alg
rithm described in the preceding section will cause troub
Indeed, in this algorithm we would first close the loop b
tweena andb, then form the contact$b,c%. Then we would
be supposed to compute the entropy change for the forma

FIG. 8. ~a! The probability distribution of the distance betwee
the ends of a freely jointed chain~see text for the parameters!. It is
indistinguishable from the same distribution calculated in
Gaussian approximation.~b!. The force extension curve of th
freely jointed chain. The straight line is the result obtained in
Gaussian approximation.

FIG. 9. A chain that forms contacts$a,b% and $b,c%.
8-9
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of the contact$a,c%, for which we would need the probabi
ity pac(r ). But the pointsa andc are already in contact~if a
is in contact withb and b is in contact withc then a is in
contact withc! and so this quantity is meaningless. The c
culation will go awry when trying to form such a contact th
already exists.

To avoid this difficulty, in our algorithm we eliminate th
redundant contact by the following procedure. We first co
bine all contacts intoclusters. For example, the list of con
tactsˆ$a,b%,$b,c%,$a,c%,$d,e%‰ will be equivalent to the fol-
lowing list of clustersˆ$a,b,c%,$d,e%‰, where the contacts
$a,b%, $b,c%, and$a,c% have been combined to a single clus
$a,b,c%, where each monomer appears only once. We n
break up each cluster back into contacts. For a cluster of
form $a1 ,a2 ,...,am% the resulting contacts will be
$a1 ,a2%,...,$am21 ,am%. Thus a cluster consisting ofm ele-
ments will be broken up intom21 contacts. Thus the origi
nal list ˆ$a,b%,$b,c%,$a,c%,$d,e%‰ undergoes the following
two transformations

ˆ$a,b%,$b,c%,$a,c%,$d,e%‰

→ˆ$a,b,c%,$d,e%‰

→ˆ$a,b%,$b,c%,$d,e%‰,

as a result of which one redundant contact has been e
nated. The list of contacts that results from this proced
has the same entropy as the original one but it has no re
dant contacts.

VII. A NUMERICAL EXAMPLE: A FOLDING CHAIN
WITH A PSEUDOKNOT

To illustrate the ideas described in the previous sectio
we consider here a simple example, calculating the entr
cost of forming a cyclic polymer that contains a sing
pseudoknot, as shown Fig. 10~a!. Our model is a polymer
that consists ofL21520 links. We will assume that eac
segment of this polymer is a Gaussian chain. More spe
cally, we model each link as a spring with a force const
g1 . The probability distribution for the end-to-end distan
of a free chain ofn links is then given by

p0n~r !5S gn

2pkBTD 3/2

expS 2
gnr 2

2kBTD , ~41!

where gn5g1 /n. The mean square distance between
ends of ann-link chain is then

^r 2&53kBT/gn[ns2, s253kBT/g1 . ~42!

The list of contacts in the folded chain configuration who
entropy we would like to calculate iŝ$0, 20%, $4, 12%, $8,
16%‰. We will assume that a contact is formed when tw
monomers are within a distanceD and the resulting entropy
loss is given by Eq.~1! with v054pD3/3.

Although in the previous sections we have describe
brute force algorithm for calculating the entropy of such
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chain with any number of contacts, this particular problem
simple enough that the result can be obtained from a ba
of-an-envelope calculation.

To see this, consider a specific folding path of the ch
that results in the desired set of contacts, see Fig. 10~b!. It
consists of three steps.

Step I. Form the contact$4, 12%. To find the entropy
change, we need the probability distribution for the distan
between monomers number 4 and 12. This is given b
Gaussian distribution of a spring whose length isn58 links
and therefore the spring constant isg1/8. The resulting en-
tropy change is found from

exp~DSI /kB!5v0p0n~0!

5~4pD3/3!S g1/8

2pkBTD 3/2

5~4pD3/3!S 3

16ps2D 3/2

. ~43!

Step II. Form the contact$8, 16%. By examining Fig. 9~b!
we find that the effective spring between monomer 8 a
monomer 16~in the presence of the contact$4, 12%! consists
of two parallel chains four links each that are connected
quentially with another chain of length 4. Using the rul
formulated in Sec. III we find that the effective spring co
stant for the equivalent chain would be given by

geff
215~g1/4!211@2~g1/4!#21

or geff5g1/6. The resulting entropy change is

FIG. 10. ~a! A chain forming contactŝ$0, 20%, $4, 12%, $8, 16%‰.
The contacts to be formed are shown as dashed lines.~b! Possible
steps that result in the formation of this chain configuration. T
contacts to be formed at each step are shown by dashed lines
8-10
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exp~DSII /kB!5~4pD3/3!S g1/6

2pkBTD 3/2

5~4pD3/3!S 1

4ps2D 3/2

. ~44!

Step III. We now see from Fig. 10~b! that the pseudokno
formed by the pair of contacts$4, 12% and$8, 16% appears as
three chains each of length 4 connected in parallel. The
sulting pseudoknot spring constant is 3g1/4. We finally com-
plete folding by closing the loop between monomers 0 a
20. The effective spring between these monomers consis
the above pseudoknot spring connected, in sequence,
two chains each including four links. The resulting spri
constant satisfies the relation

geff
215~g1/4!211~g1/4!211@3~g1/4!#21,

which givesgeff53g1/28, and, for the entropy change

exp~DSIII /kB!5~4pD3/3!S 3g1/28

2pkBTD 3/2

5~4pD3/3!S 9

56ps2D 3/2

. ~45!

The resulting entropy change is

exp~DS/kB!5exp~DSI /kB!exp~DSII /kB!exp~DSIII /kB!

5
3A3/14

896p3/2 S D

s D 3

'0.000 278 35~D/s!3. ~46!

One can check that by taking a different folding path, i.e.,
adding the contacts in a different order, one obtains differ
entropy changes in each individual steps but identically
same final entropy~46!. Of course, one does not have
perform these steps manually. Our algorithm does them
tomatically.

In Fig. 11, we have summarized the different foldin
paths and plotted the entropy of each intermediate state.
definiteness, we assumedD/s51. The entropy of the initial
state without contacts is set to be the origin,S50. All paths
lead to the same final state with all the contacts form
Because of the symmetry, the contacts$4, 12% and$8, 16% are
equivalent. This results in only four distinct intermedia
states shown in Fig. 11. The lines between the states ind
the possible folding paths.

It is instructive to compare the exact result, Eq.~46!, with
the existing approximations. In the independent loop
proximation@7# one writes the total entropy as

DS' (
i 1 , j k

DSi kj k
, ~47!

where the entropy of the formation of a single contact
given by the single-loop expression
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exp~DSi j /kB!5v0pi j ~0!5S 6

p D 1/2S D

s D 3

u i 2 j u23/2.

~48!

Applying Eq. ~47! to the present problem gives

exp~DS/kB!'0.000 057 635~D/s!3. ~49!

Comparing this with Eq.~46!, the independent loop approx
mation underestimates the probability of forming our co
figuration by about a factor of five. This is not surprising
this approximation ignores the fact that forming one cont
makes the chain more compact and thus facilitates the
mation of others.

We next analyze the mean-field approximation@7,9#. In
this approximation one uses Eq.~47! with DSi j set to be a
constant,

exp~DSi j /kB!5S 6

p D 1/2S D

s D 3

l eff
23/2, ~50!

where

l eff5L/N. ~51!

This approximation is expected to work well in the limit of
large number of contactsN, while in our caseN53. Using
Eqs.~47!, ~50!, and~51!, we find

exp~DS/kB!'0.000 415 49~D/s!3, ~52!

which overestimates the probability of forming this config
ration by a factor of;1.5.

Finally, Shoemaker and Wolynes@7# used an interpolation
formula between the single-loop limit and the mean-field f
mula, Eqs.~48! and ~50!,

FIG. 11. Possible pathways resulting in the formation of t
chain configuration with the three contacts,ˆ$0, 20%, $4, 12%, $8,
16%‰. The chain entropy is plotted as a function of the number
contacts for each path.
8-11
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exp~DSi j /kB!5S 6

p D 1/2S D

s D 3

~ l eff
23/21u i 2 j u23/2! ~53!

Substituting this into Eq.~47!, we find

exp~DS/kB!'0.001 659~D/s!3, ~54!

which is larger than the exact value.

VIII. CONCLUDING REMARKS

The representation, in which a polymer conformation
specified by a set of contacts it forms, provides a conven
way to discretize the conformational space of an RNA o
protein molecule thereby reducing its size and making it tr
table. Any state of the polymer is represented as a con
map such as the one in Fig. 3. Other discrete models
biopolymers were proposed, lattice models being most
table among them@37,38#. We note that lattice proteins ar
‘‘models’’ while contact maps are coarse grained represe
tions of ‘‘true’’ proteins or RNA molecules.

The folding pathways, for a contact representation o
protein or an RNA molecule can be plotted as diagrams
Fig. 11. Some of the pathways may be blocked becaus
high free energy barriers along them. One can further st
the dynamics of such models by assuming that the trans
between any two adjacent points of a diagram is a first or
kinetic process, with forward and backward rate consta
satisfying the principle of detailed balance@1#. We also note
c.
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that contact formation rate constants have been meas
experimentally in the case of simple loops in some polyp
tides @39–41#.

The use of our approach by itself does not solve the R
or protein ‘‘folding problem.’’ The total size of the confor
mational space and therefore the number of possible fold
pathways is still exponentially large. Thus an exhaust
search for the minimum free energy state is still a prohibit
problem. However, use of our algorithm will greatly enhan
kinetic Monte Carlo simulations@1–3,5,30,42# that sample
the kinetically probable pathways rather than all possi
pathways. A kinetic Monte Carlo algorithm mimics the ev
lution of a single molecule en route to its native state and
be directly related to the single molecule observations
protein or RNA kinetics@43#.

We finally note that our results concerning the mechan
properties of cross-linked chains imply that the mechan
response of individual protein and RNA molecules is co
trolled by their native topology. Klimov and Thirumalai@44#
arrived at the same conclusion on the basis of an off-lat
simulation of the force induced unfolding of globular pr
teins. The diversity of protein tertiary structures thus a
counts for the diversity of the mechanical properties exh
ited by proteins in living organisms.
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